Lon protease of Azorhizobium caulinodans ORS571 is required for suppression of reb gene expression.

نویسندگان

  • Azusa Nakajima
  • Toshihiro Aono
  • Shuhei Tsukada
  • Lowela Siarot
  • Tetsuhiro Ogawa
  • Hiroshi Oyaizu
چکیده

Bacterial Lon proteases play important roles in a variety of biological processes in addition to housekeeping functions. In this study, we focused on the Lon protease of Azorhizobium caulinodans, which can fix nitrogen both during free-living growth and in stem nodules of the legume Sesbania rostrata. The nitrogen fixation activity of an A. caulinodans lon mutant in the free-living state was not significantly different from that of the wild-type strain. However, the stem nodules formed by the lon mutant showed little or no nitrogen fixation activity. By microscopic analyses, two kinds of host cells were observed in the stem nodules formed by the lon mutant. One type has shrunken host cells containing a high density of bacteria, and the other type has oval or elongated host cells containing a low density or no bacteria. This phenotype is similar to a praR mutant highly expressing the reb genes. Quantitative reverse transcription-PCR analyses revealed that reb genes were also highly expressed in the lon mutant. Furthermore, a lon reb double mutant formed stem nodules showing higher nitrogen fixation activity than the lon mutant, and shrunken host cells were not observed in these stem nodules. These results suggest that Lon protease is required to suppress the expression of the reb genes and that high expression of reb genes in part causes aberrance in the A. caulinodans-S. rostrata symbiosis. In addition to the suppression of reb genes, it was found that Lon protease was involved in the regulation of exopolysaccharide production and autoagglutination of bacterial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stringent Expression Control of Pathogenic R-body Production in Legume Symbiont Azorhizobium caulinodans

R bodies are insoluble large polymers consisting of small proteins encoded by reb genes and are coiled into cylindrical structures in bacterial cells. They were first discovered in Caedibacter species, which are obligate endosymbionts of paramecia. Caedibacter confers a killer trait on the host paramecia. R-body-producing symbionts are released from their host paramecia and kill symbiont-free p...

متن کامل

Identification and characterization of a functional nodD gene in Azorhizobium caulinodans ORS571.

Azorhizobium caulinodans ORS571, a bacterium capable of nodulating roots and stems of the tropical legume Sesbania rostrata, has been shown to have no nodD-like gene located immediately upstream from its common nodABC locus. A clone carrying a functional nodD gene of strain ORS571 has now been isolated from a pLAFR1 gene library by screening for naringenin-induced expression of the common nod g...

متن کامل

Azorhizobium caulinodans Transmembrane Chemoreceptor TlpA1 Involved in Host Colonization and Nodulation on Roots and Stems

Azorhizobium caulinodans ORS571 is a motile soil bacterium that interacts symbiotically with legume host Sesbania rostrata, forming nitrogen-fixing root and stem nodules. Bacterial chemotaxis plays an important role in establishing this symbiotic relationship. To determine the contribution of chemotaxis to symbiosis in A. caulinodans ORS571-S. rostrata, we characterized the function of TlpA1 (t...

متن کامل

The infection and impact of Azorhizobium caulinodans ORS571 on wheat (Triticum aestivum L.)

Based on our previous study, cereal crop wheat (Triticum aestivum L.) could be infected by rhizobia Azorhizobium caulinodans ORS571, and form para-nodules with the induction of 2.4-dichlorophenoxyacetic acid, a common plant growth regulator. To enhance this infection and the potential agricultural application, we compared six different infection methods (Direct seed dip; Seed germination dip; P...

متن کامل

Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis.

The molecular and physiological mechanisms behind the maturation and maintenance of N(2)-fixing nodules during development of symbiosis between rhizobia and legumes still remain unclear, although the early events of symbiosis are relatively well understood. Azorhizobium caulinodans ORS571 is a microsymbiont of the tropical legume Sesbania rostrata, forming N(2)-fixing nodules not only on the ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 78 17  شماره 

صفحات  -

تاریخ انتشار 2012